Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

نویسندگان

  • Wen-Jun Gui
  • Shi-Qiang Lin
  • Yuan-Yuan Chen
  • Xian-En Zhang
  • Li-Jun Bi
  • Tao Jiang
چکیده

The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M. tuberculosis Sliding β-Clamp Does Not Interact Directly with the NAD+ -Dependent DNA Ligase

The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C222(1) with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibi...

متن کامل

Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC

Recent determinations of the crystal structure of the Escherichia coli gamma complex and delta-beta assembly have shed light on the bacterial clamp loading reaction. In this review, we discuss the structures of delta-beta and the gamma(3)deltadelta' complex and its mechanism of action as a clamp loader of the E. coli beta sliding clamp. We also expand upon the implications of the structural fin...

متن کامل

RAPID DETECTION OF MYCOBACTERIUM TUBERCULOSIS IN CLINICAL SPECIMENS BY POLYMERASE CHAIN REACTION

We investigated the use of DNA amplification by polymerase chain reaction (peR) for detection of Mycobacterium tuberculosis in 300 patients who were suspected of having pulmonary tuberculosis and compared the results with culture results which were performed in parallel with PCR. Two-thirds of each sample was processed for smear and culture by standard methods and one-third was prepared fo...

متن کامل

The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity

DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relation...

متن کامل

DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs.

Evidence suggests that some nonsteroidal anti-inflammatory drugs (NSAIDs) possess antibacterial properties with an unknown mechanism. We describe the in vitro antibacterial properties of the NSAIDs carprofen, bromfenac, and vedaprofen, and show that these NSAIDs inhibit the Escherichia coli DNA polymerase III β subunit, an essential interaction hub that acts as a mobile tether on DNA for many e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 405 2  شماره 

صفحات  -

تاریخ انتشار 2011